You can also find my articles on my Google Scholar profile.
Journal papers:
- W. Li, X. Sun, S. Huang, H. Jiang, S. Yu, “A 40nm MLC-RRAM compute-in-memory macro with sparsity control, on-chip write-verify, and temperature-independent ADC references,” IEEE Journal of Solid State Circuits, vol. 57, no. 9, pp. 2868-2877, 2022.
- H. Jiang, W. Li, S. Huang, S. Cosemans, F. Catthoor, S. Yu, “Analog-to-digital converter design exploration for compute-in-memory accelerators,” IEEE Design & Test, vol. 39, no. 2, pp, 48-55, 2022.
- S. Huang, X. Sun, X. Peng, H. Jiang, S. Yu, “Achieving high in-situ training accuracy and energy efficiency with analog non-volatile synaptic devices,” ACM Transactions on Design Automation of Electronic Systems, vol. 27, no. 4, p. 37, 2022.
- J.-W. Su, X. Si, Y.-C. Chou, T.-W. Chang, W.-H. Huang, Y.-N. Tu, R. Liu, P.-J. Lu, T.-W. Liu, J.-H. Wang, Y.-L. Chung, J.-S. Ren, H. Jiang, S. Huang, S.-H. Li, S.-S. Sheu, C.-I. Wu, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-T. Tang, S. Yu, M.-F. Chang, “Two-way transpose multibit 6T SRAM computing-in-memory macro for inference-training AI edge chips,” IEEE Journal of Solid-State Circuits, vol. 57, no. 2, pp. 609-624, 2022.
- S. Yu, H. Jiang, S. Huang, X. Peng, A. Lu, “Compute-in-memory chips for deep learning: recent trends and prospects”, IEEE Circuits and Systems Magazine, vol. 21, no. 3, pp. 31-56, 2021, invited review.
- X. Peng, S. Huang, H. Jiang, A. Lu, S. Yu, “DNN+NeuroSim V2.0: An end-to-end benchmarking framework for compute-in-memory accelerators for on-chip training,” IEEE Trans. CAD, vol. 40, no. 11, pp. 2306-2319, 2021.
- A. Lu, X. Peng, Y. Luo,S. Huang, S. Yu, “A runtime reconfigurable design of compute-in-memory based hardware accelerator for deep learning inference,” ACM Transactions on Design Automation of Electronic Systems, vol. 26, no. 6, p. 45, 2021.
- S. Huang, H. Jiang, X. Peng, W. Li, S. Yu, “Secure XOR-CIM engine: Compute-in-memory SRAM architecture with embedded XOR encryption,” IEEE Trans. VLSI Systems, vol. 29, no. 12, pp. 2027-2039, 2021.
- H. Jiang, X. Peng, S. Huang, S. Yu, “CIMAT: A compute-in-memory architecture for on-chip training based on transpose SRAM arrays,” IEEE Transactions on Computers, vol. 69, no. 7, pp. 944-954, 2020.
Conference papers:
- C. Wang, Z. Chen, S. Huang, “MICSim: A Modular Simulator for Mixed-signal Compute-in-Memory based AI Accelerator,” Proceedings of the 30th Asia and South Pacific Design Automation Conference(ASPDAC) 2025, Tokyo, Japan.
- H. Jiang, W. Li, S. Huang, S. Yu, “A 40nm analog-input ADC-free compute-in-memory RRAM macro with pulse-width modulation between sub-arrays,” IEEE Symposium on VLSI Technology and Circuits (VLSI) 2022, Hawaii, USA, highlight paper.
- W. Li, X. Sun, H. Jiang, S. Huang, S. Yu, “A 40nm RRAM compute-in-memory macro featuring on-chip write-verify and offset-cancelling ADC references,” IEEE European Solid-State Circuits Conference (ESSCIRC) 2021, virtual.
- W. Li, S. Huang, X. Sun, H. Jiang, S. Yu, “Secure-RRAM: A 40nm 16kb compute-in-memory macro with reconfigurability, sparsity control, and embedded security,” IEEE Custom Integrated Circuits Conference (CICC) 2021, virtual.
- A. Lu, X. Peng, Y. Luo, S. Huang, S. Yu, “A runtime reconfigurable design of compute-in-memory based hardware accelerator,” IEEE/ACM Design, Automation & Test in Europe (DATE) 2021, virtual.
- S. Huang, X. Peng, H. Jiang, Y. Luo, S. Yu, “Exploiting process variations to protect machine learning inference engine from chip cloning,” IEEE International Symposium on Circuits and Systems (ISCAS) 2021, virtual.
- S. Huang, H. Jiang, S. Yu, “Mitigating adversarial attack for compute-in-memory accelerator utilizing on-chip finetune,” IEEE Non-Volatile Memory Systems and Applications Symposium (NVMSA) 2021, virtual.
- J-W. Su, X. Si, Y-C. Chou, T-W. Chang, W-H. Huang, Y-N. Tu, R. Liu, P-J. Lu, T-W. Liu, J-H. Wang, Z. Zhang, H. Jiang, S. Huang, S. Yu, K-T. Tang, C-C. Hsieh, R-S. Liu, S-H. Li, S-S. Sheu, H-Y. Lee, S-C. Chang, M-F. Chang, “A 28nm 64Kb inference-training two-way transpose multibit 6T SRAM computing-in-memory macro for AI edge chips” IEEE International Solid-State Circuits Conference (ISSCC) 2020, San Francisco, USA.
- H. Jiang, S. Huang, X. Peng, J.-W. Su, Y.-C. Chou, W.-H. Huang, T.-W. Liu, R. Liu, M.-F. Chang, S. Yu, “A two-way SRAM array based accelerator for deep neural network on-chip training,” ACM/IEEE Design Automation Conference (DAC) 2020, virtual (nomination for the best paper).
- S. Yu, X. Sun, X. Peng, S. Huang, “Compute-in-memory with emerging nonvolatile-memories: challenges and prospects,” IEEE Custom Integrated Circuits Conference (CICC) 2020, virtual, invited.
- S. Huang, H. Jiang, X. Peng, W. Li, S. Yu, “XOR-CIM: Compute-in-memory SRAM architecture with embedded XOR encryption,” IEEE/ACM International Conference on Computer-Aided Design (ICCAD) 2020, virtual.
- S. Huang, X. Sun, X. Peng, H. Jiang, S. Yu, “Overcoming challenges for achieving high in-situ training accuracy with emerging memories,” IEEE/ACM Design, Automation & Test in Europe (DATE) 2020, virtual, invited.
- H. Jiang, X. Peng, S. Huang, S. Yu, “MINT: Mixed-precision RRAM-based in-memory training architecture,” IEEE International Symposium on Circuits and Systems (ISCAS) 2020, virtual.
- X. Peng, S. Huang, Y. Luo, X. Sun, S. Yu, “DNN+NeuroSim: An end-to-end benchmarking framework for compute-in-memory accelerators with versatile device technologies,” IEEE International Electron Devices Meeting (IEDM) 2019, San Francisco, USA.
- H. Jiang, X. Peng, S. Huang, S. Yu, “CIMAT: A transpose SRAM-based compute-in-memory architecture for deep neural network on-chip training,” ACM/IEEE International Symposium on Memory Systems (MEMSYS) 2019, Washington, DC, USA.